Scientists discover how to turn sea water into safe drinking water

Scientists at the University of Manchester have developed a revolutionary way of sieving salt from sea water.

This provides the potential to provide clean drinking water for people who struggle to access adequate clean water sources.

The new findings from the team of scientists were published yesterday (Monday, April 3) in the journal Nature Nanotechnology.

Previous graphene- oxide membranes have shown exciting potential for gas separation and water filtration.

Graphene-oxide membranes developed at the National Graphene Institute have already demonstrated the potential of filtering out small nanoparticles, organic molecules, and even large salts.

Until now, however, they couldn’t be used for sieving common salts used in desalination technologies, which require even smaller sieves.

Previous research at the university found that if immersed in water, graphene-oxide membranes become slightly swollen and smaller salts flow through the membrane along with water, but larger ions or molecules are blocked.

The Manchester-based group has now further developed these graphene membranes and found a strategy to avoid the swelling of the membrane when exposed to water.

The pore size in the membrane can be precisely controlled which can sieve common salts out of salty water and make it safe to drink.

As the effects of climate change continue to reduce modern city’s water supplies, wealthy modern countries are also investing in desalination technologies.

Following the severe floods in California major wealthy cities are also looking increasingly to alternative water solutions.

Professor Rahul Nair, at The University of Manchester, said: “Realisation of scalable membranes with uniform pore size down to atomic scale is a significant step forward and will open new possibilities for improving the efficiency of desalination technology.

“This is the first clear-cut experiment in this regime. We also demonstrate that there are realistic possibilities to scale up the described approach and mass produce graphene-based membranes with required sieve sizes.”

Jijo Abraham and Dr Vasu Siddeswara Kalangi were the joint-lead authors on the research paper.

“The developed membranes are not only useful for desalination, but the atomic scale tunability of the pore size also opens new opportunity to fabricate membranes with on-demand filtration capable of filtering out ions according to their sizes,” said Abraham.

By 2025 the UN expects that 14% of the world’s population will encounter water scarcity. This technology has the potential to revolutionise water filtration across the world, in particular in countries which cannot afford large scale desalination plants.

It is hoped that graphene-oxide membrane systems can be built on smaller scales making this technology accessible to countries which may not have the financial infrastructure to fund large plants without compromising the yield of fresh water produced.

Click here to sign up to receive our new South West business news...
Close